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Two-dimensional boundary layers in a free stream 
which oscillates without reversing 
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The laminar boundary layer over the semi-infinite rigid plane y = 0, z > 0 is 
examined for the case when the free-stream velocity takes the form 

U ( x ,  t )  = Uo(x) (1 + a, sin wt) ,  

where 0 < a, < 1 and U,(x) K xn, 0 < n < I. The corresponding steady solution 
is the Falkner-Skan boundary layer with zero (n = 0) or favourable pressure 
gradient (n = 1 corresponds to the stagnation-point boundary layer). The skin 
friction, and the heat transfer from the wall when that is maintained at it uniform 
temperature T, greater than the temperature To of the oncoming fluid, are cal- 
culated by means of two asymptotic expansions: a regular one for small values 
of the frequency parameter s,(x) = wx/U,(z)  and a singular one (requiring the 
use of matched asymptotic expansions) for large va.lues of el. The principal 
difference between this work and that of earlier authors is that here a, is not 
required to be small. Numerical computations are made for three values of 
n (0, +, l),  three values of a, (0.2,0.5 and 0.8) and (in the case of the heat transfer) 
two values of the Prandtl number (T (0.72 and 7.1). It is demonstrated that for 
each n there is a value of el at which the small- and the large-s, expansions for the 
skin friction overlap quite well, and that, near the overlap region, two terms of 
the small-s, expansion provide a more accurate asymptotic representation of 
the solution than three. It is also shown that there is no region of overlap be- 
tween the small- and the large-e, heat-transfer expansions, except in one case 
(n = 4, (T = 0.72) where the overlap value of el ( =  2.0) is the same as for the 
skin-friction expansions. The question of the existence of eigensolutions in the 
large-s, expansion, where on physical grounds they can be expected to appear, is 
discussed in the appendix. 

1. Introduction 
The problem to be considered in this paper is that of the laminar two- 

dimensional boundary layer which is generated on a semi-infinite plane boundary 
when a viscous incompressible fluid flows over it in such a way that the velocity 
on that boundary in the absence of viscosity has the form 

U ( x , t )  = U,(X) V(wt ) .  (1.1) 

Here x is the distance measured along the boundary from its leading edge, t 
t Also Department of Mathematics. 
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is the time and l / w  is a typical time scale of the motion. U, is restricted to the 
form U,(X) = Kx", 

where K is a constant and 0 d n < 1, and thus represents flow with favourable 
(or zero) pressure gradient over a wedge. The extremes n = 0 and n = 1 refer 
to flow over a flat plate and near a stagnation point respectively. The only 
restriction to be imposed at this stage on V(wt) is that it should be always positive 
(no reversal of the free stream), although all numerical results will be calculated 
for the case in which 

(1.2) 

V(wt) = l+a,sinwt, 0 < al < 1. (1.3) 

All solutions are then expected to be periodic in time; indefinitely growing 
(secular) solutions are rejected. In addition to investigating the viscous boundary 
layer, we examine the thermal boundary layers generated when the plane 
boundary is maintained at a uniform temperature T, different from the tempera- 
ture To of the oncoming fluid. 

This problem has attracted the attention of a, number of authors over the 
years. Lighthill (1954) treated the case of an arbitrary function Uo(x), with time 
dependence (1,3), but with small values of the amplitude parameter a,. He solved 
the first-order (in al) equations approximately in the two limiting cases where 
the frequency parameter 

el(%) = (4UO(X) (1.4) 

tends to zero and infinity respectively, taking the first term in the asymptotic 
expansion at each limit. For small el, Lighthill calculated the increase in ampli- 
tude and the phase lead of the skin friction over its value when el = 0 (the 
quasi-steady case), and the corresponding decrease in amplitude and phase lag 
of the heat transfer when the wall is heated. For large el, he showed that the 
asymptotic value of the phase lead of the skin friction is $71 and the phase lag 
of the heat transfer is &T, However, in the limit of large el the unsteady part of 
the boundary layer is confined to a thin Stokes layer, of thickness (vlw)' 2, em- 
bedded within the steady boundary layer of the mean flow, of thickness (vx/UO)g, 
so that, as e,-+co for fixed al, the velocity fluctuations are no longer small 
compared with the local mean flow in the Stokes layer. Thus the small-a, 
approximation is not uniformly valid as el --f 00. 

Subsequent authors have extended Lighthill's solution, but in general have 
retained the small-a, approximation. Gibellato (1955) and Ghosh (1961) re- 
stricted themselves to the case of the semi-infinite flat plate (n = 0 ) ,  and in- 
dependently extended the small-e, expansion (still to the first order in al) to 
several terms. Ghosh also extended the large-€, expansion, but considered only 
the viscous, not the thermal, boundary layer. Rott & Rosenzweig (1960) did 
the same for the general Falkner-Skan boundary layer (Uo(x) of the form (1.2) for 
any n),  paying particular attention to the stagnation-point case (n = 1) .  Lam & 
Rott (1960) gave an exhaustive mathematical treatment of the linear first-order 
(in al) problem, including numerical calculations of the f i s t  15 terms of the 
small-e, expansion. Finally, Gersten (1965) repeated the small- and large-el 
expansions to the second order in a,, in order to examine the interaction between 
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the oscillatory boundary layer and the mean flow. The small amplitude approxi- 
mation has been shown to be unnecessary in both the small-el case (see Moore 
(1951, 1957), who made most of the calculations contained in $ 2  below) and the 
large-€, case (Lin 1956; Gibson 1957) but this work has not been followed up 
except in arecent paper by Ishigaki (1970)) who considered the case of stagnation- 
point flow (n = 1). 

The main purpose of the present paper, then, is to solve the problem with no 
restriction on the value of ar except that it must be less than 1, for if cc1 2 1 the 
boundary-layer approximation breaks down, a t  least near the leading edge of 
the semi-infinite boundary. In  $ 2  the small-el expansion is outlined, and the 
solutions for skin friction and heat transfer as functions of time are derived; this 
is a regular expansion. The large-el limit is singular, and the method of matched 
asymptotic expansions is used in $ 3 to derive the first three terms for the skin 
friction and heat transfer. The problems which arise are similar, but rather more 
complicated, than those of the companion paper (Pedley 1972). In  $4 some 
numerical calculations of skin friction and heat transfer are made for three values 
of n, n = 0 (flat plate), Q (wedge of semi-vertex angle in) and 1 (stagnation point), 
for three values of a1 (0*2,0.5 and 0.8) and for two values of the Prandtl number 
r (0.72 ,the value for air, and 7.1, the value for water at  20°C). The small- and 
large-el expansions for the skin friction are shown to overlap quite well for a 
certain range of values of el (different for each n), and between them should 
provide a good representation of the solution for all el. Good overlap is not 
achieved for the heat-transfer expansions. 

Let the origin of co-ordinates be at the leading edge of the semi-infinite plane 
boundary, with x measured along it and y at  right-angles to it, and let the velocity 
components (u, w) be expressed in terms of a stream function $: 

(u, 4 = ($Y) - $d. 

&It i- $Y $xu - $z $gy = v, $- uux f V$YYY, 

(1.5) 

(1.6) 

Then the equation governing incompressible laminar viscous flow in the boundary 
layer is 

where v is the kinematic viscosity of the fluid and U(x ,  t )  is given by (1 .1) .  The 
boundary conditions on $ are 

$ = $ y = ~  on y = o ,  $ Y : ~ ( x , t )  as y+co, (1 .7 )  

where 
expressed in terms of the dimensionless temperature 6 = (T - To)/(Tl - To), is 

where r is the Prandtl number. The boundary conditions on 8 are 

means ‘tends exponentially to ’. The thermal boundary-layer equation, 

4 -k $,ex - $X6Y = ( v / d  8112/’ (1.8) 

8 = 1  on y=O, 6 5 0  as y-tco. (1.9) 

These equations and boundary conditions govern the problem. The skin friction 
at the wall (divided by the viscosity) is 

(1.10) 

(1.11) 
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2. Asymptotic expansion for small el(%) 

sionalization is applicable. Introduce new variables r ,  7' and q5 defined by 
The limit el -+ 0 is clearly the quasi-steady limit, and the steady non-dimen- 

where it is not necessary to non-dimensionalize x, since, as we shall see, it  
appears only in the dimensionless quantity el(%) (definition (1.4)). When U(z, t )  
is given by (1.1) and (1.2), but not yet (1.3), the dimensionless version of (1.6) is 

q5,g,,, + (n + 1) q5q5ff - 2nq5; + 2 4 4 ,  q5ff - 9Tf5Lf) - 

where P is the first derivative of V(r) .  The boundary conditions on q5 are 

+ = #7. = o on 7' = 0,  $Tr  I as T I - +  co. 

We seek a similarity solution in powers of el(%) of the form 
m 

4 = ~ ( 7 ' )  + 2 $m(7', 7). 
m = l  

If we substitute this into (2.2) (remembering that el($) oc  XI-^) and equate like 
powers of el, we obtain a series of equations for the functions 4,. The zero-order 
equation is 

which, with the boundary conditions q50(0) = &(O) = 0, q50(co) = 1, defines the 
steady Falkner-Skan boundary-layer problem (Rosenhead 1963, p. 235). Let 
us write the solution as q50 = f0(f); this is a function whose properties are well- 
known, and for the three values of n in which we are most interested (0 ,  Q, I )  it is 
tabulated in Rosenhead (1963). For a more detailed tabulation, the equation 
was re-integrated numerically, by means of the procedure outlined in Rosenhead, 
and the tables given there were used as a check. Those values of the function to 
be used later are given in table 1. The first- and second-order equations can be 
solved by functions $1 and q5z of the following form: 

n 

0 

1 
& 

= fi(0) 
0.46960 
1.07 119 
1.74314 

TABLE 1. The properties of f o ( ~ )  

P = lim ( 7 1 - f o )  
7-m 

1.21678 
0.69676 
0.45813 
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12 . G ( O )  f2;(0) f20) u- 9 ; m  Sil(0) g ; m  d , ( O )  
0 1.19999 0.38308 - 0.66424 0.72 - 0.41809 0.02887 - 0.09328 0.17704 

7.1 -0.91784 0.31927 0.14638 0.24267 + 0.62571 0.11756 -0.11827 0.72 -0-54914 0.17537 0.15886 -0.07640 
7.1 - 1.26834 0’72892 1-16299 - 0.60815 

1 040373 0.04122 -0*03580 0.72 -0.70914 0.24844 0.35916 -0.16295 
7.1 - 1.67500 0.96286 2.12980 - 0.99153 

TABLE 2 

The functions fmk(q’) satisfy inhomogeneous equations of the form 

f 2 k  + (n + l)fof?L - 2[m(l- n) + 2nI f;fL 
+[2m(l-n)+ I+n]f:frnk= p m k ( 7 ’ )  (2.5) 

together with homogeneous boundary conditions; here Pmk depends only on fo 
andf,,, where I < m. These linear equations have been solved numerically by the 
Runge-Kutta-Gill method, with values of fo(q’) and its derivatives obtained by 
Lagrangian five-point interpolation from the tables of that function. The values 
of fLk (0 ) ,  required for the skin-friction calculation, are given for n = 0, 8, 1 in 
table 2. The procedure for calculating further terms in the small-el expansion is 
straightforward. Every term can bewritten as the sum of products of known 
functions of r and functions of 7’ which can be computed from a knowledge of 
the previous functions, as in the expression for q5z in (2.4). It can be seen, 
incidentally, that this expansion must break down if V ( T )  approaches zero, or 
if any of its derivatives are anywhere very large, because of the form of functions 
like $ z .  Hence the restriction that a1 be less than 1. 

The skin friction (1.10) can be written in dimensionless form as 

The heat equation (1.8) can be solved in a simiIar way. The same non- 
dimensionalization leads to the following equation for 8: 

We try solutions of the form 

and obtain equations for the gmk(f) as follows: 

(1/0-)gkk+ (n+l)fog~k-2m(l-n)f~g,, = %mk(T’), (2.8) 

where gmk depends onfO,f,, ( I  Q m) andgl, (1 < m); gOl(f) = 0. These are solved 
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numerically, by the same method as that for equations (2 .5 ) ,  subject to the 
boundary conditions 

g01(') = '7 gmk (m>O)(O) = gmk (m>Odco) = O* 

The values of gLk(0), needed for the heat transfer, are given in table 2 for the 
two chosen values of 0-. 

The heat transfer per unit area (1.11) is given in dimensionless form as 

3. Asymptotic expansion for large el(x) 

Here V ( 7 )  is restricted to the form (1.3), and the method of matched asymptotic 
expansions is used to solve the governing equations. Suitable outer and inner 
variables for the solution of (1.6) are, respectively (cf. 3 4 of the companion paper), 

Outer variables: 7 = [ E ] ' y ,  $(x,v,  7 )  = [2vxUo(x)]-4$, (3.1) 

( 3 4  

where Y l ( 4  = .I+), (3.3) 

Inner variables: 
0' J 'I w x 7  6, 7) = ( G) U i , W  11. = - 7  6 = ($Y = y,o' 

Y1 

which is the small parameter in powers of which we shall expand the solutions 
for I,& andY?. The lengths with which y is non-dimensionalized are the thicknesses 
of the steady (Falkner-Skan) and oscillatory (Stokes) boundary layers re- 
spectively. 

3.1. The outer expansion 

In  terms of the outer variables, (1.6) becomes 

2JT7 - Y W  (J,,, + (n + 1) ?w7, - 2 4 :  + wJzI ,&, ,  - J x 7 ? J 7 ) ,  

= 2u, cos T + 2 ~ 3 ~ )  n( 1 + a, sin T ) ~ .  (3.4) 
The outer boundary condition is that 

-1; 1+u,sinT as y+m, (3.5) 

while the inner condition is that of matching to the inner solution (the inner 
condition on $ is given by (1.7)).  There is a further condition which states 
that, as u1 -+ 0, $ would tend to become the stream function for steady flow, 
that is + - f o ( ' I )  as a1 + 0- (3.6) 

We seek an expansion for $ of the form 

(3.7) 
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which we substitute into (3 .4) ,  equating like powers of yl, to obtain a series of 
equations for the functions gm. The zero-order equation is 

gov7 = “1 cos 7, 

of which the general solution satisfying conditions (3 .5)  and (3.6) is 

$0 = alrsin7+fO(r)+Fo(r)+~o(7), (3.8) 

where the last two terms tend to zero as a1 + 0 but are otherwise arbitrary func- 
tions. @,(T) is expected to be oscillatory with zero mean; any constant part can 
be incorporated into F,. The solution of the first-order equation is just 

$1 = Flh) + !w), (3.9) 

where PI and pl are arbitrary functions. Here a dot and a prime denote dif- 
ferentiation with respect to 7 and respectively. Henceforth the 7 dependence 
of functions will always be stated explicitly, but the q dependence will usually be 
understood. 

The equation for $, is 

2$,,, = f ,  + (n + 1) [qa sin 7 +fA + !P0(7)-jf~ 

- 2 n ( f ; + a , s i n ~ ) ~ + 2 n ( l  +a1sin7),, (3.10) 

where we have used (3.8), puttingfo = fo+Fo. In  order that there should be no 
secular terms,f,(r) must satisfy (2 .3 ) .  Now this is the equation satisfied byf,(q), 
which also satisfies both the wall boundary conditions and the steady part of 
the boundary condition far from the wall, but we cannot yet rule out the existence 
of functions F,(r) such that F,(O) or Fk(0) is non-zero. After removing the time- 
independent part of (3.10), we can integrate that equation to give 

$, = - a, cos 7@(n  + 1) 7.f; - 4(5n + ~ ) f ,  + 2nql 

+*(n+ 1)f;TO(7)+F~(r)+@,(7) ,  (3 .11)  

where again the last two terms are arbitrary functions. In  all cases we expect the 
arbitrary functions occurring in grn to be determined by the equation obtained 
from prohibiting secular terms in gm+, and by boundary conditions derived 
from the inner expansion. Eigenfunctions may occur (solutions which satisfy 
both the outer and the wall boundary conditions identically), and there is 
nothing we can do to determine them. 

can be solved similarly. For secular terms to be 
absent, Fl(y) and F,(r]) must satisfy the equations 

The problems for g3 and 

FE + ( n  + l)foPA + [m( 1 - n) - 4nIfhF; - [m( 1 - n )  - (1 + n)]f:Fm 

= -6,,[2nF,F’;+ (1 - 3n)H;,] ( 3 . 1 2 )  
(m = 1 , 2 )  and the boundary conditions 

e 
F ; + O  as q- tco .  

The solution for is 

= - El COS 7[&(n + 1 )  YP; - 3nF1] + &(n 4- 1) FiTo(7) 

+ ”$; T’(7) + $3(7) + p3(7) (3.13) 
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and the solution for g4 is 
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- +( 1 + 9n) (1 - 5n) f'"(t) dt ++a; cos 27 
1:-0 1 

x {+(n+ 1)2qy:++(1 +n) (1 - 11n)vf~ - +(I + 5n) (1 - 7n)f0+ 4n(i - 3n)q} 

- +al cos ~ { ( n  + 1) 7li.i + (1 - 7n) F2} - +( 1 - 3n) T2(7)fA 

+ nTl(T) p; + 94(7) + F4(7)) (3.14) 

where a number of terms containing T0(7) have been omitted because To is sub- 
sequently shown to be zero. In each case, the last two terms are arbitrary func- 
tions. The outer boundary conditions on the terms in the inner expansion are 
obtained by rewriting the outer expansion (equations (3.8)) (3.9), (3.11), (3.13) 
and (3.14)) in terms of the outer variable [ = r/yl and expanding in powers 
of yl. Each term of that expansion can be used as the outer boundary condition 
on a corresponding term of the inner solution, as in the companion paper. 

3.2. The inner expansion 

In terms of inner variables, (1.6) becomes 

2YcT -Yccc + 2y2,(x){nY% - nYYcc + xYzcYc - xYzYcc} 

= 2a, cos~+2ny;(x) ( l+cx,s in~)~,  (3.15) - 

with inner boundary condition 

Y = Y c = O  at [ = O .  

We seek a solution of the form 
m 

m=-1 
y = 2 y?(x)~rnK,7), 

recalling that $ = ylY, and substitute this series 
powers of y,. 

The problem for Y.-l is then 

(3.16) 

into (3.15), equating like 

2 Y - g r - Y 1 c 6 c  = 0;  Y-.I(O,7) = Yqg(0,T) = 0,  Y-&O,T) = FO(O)+ Po(T), 

which has no steady or periodic (non-diffusing) solution unless Y-l(m,~)  = 0,  
in which case Y-l = 0. Thus, without loss of generality, we may set 

To(?-) EE 0, FO(O) = 0. (3.17) 

The problem for Yo is 
2Yocr-Y~~55 = COST, 

y o ( O ,  7) = Yo,(O, T )  = 0, Yo(m, T )  - &(o) + P1(7) + al[sin T + CFA(O), 
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where the last condition comes from (3.8) and (3.9). This has no periodic solution 

unless FA(0) = Fl(0) = 0, T1(7) = +a1(sin7+cos7), (3.18) 

(3.19) 
yo = a,csinT-Im a +[l-e++i)c]]. eir 

and then 

This represents the Stokes layer, whose existence in this problem was first 
demonstrated by Lighthill (1954) and Lin (1956). Note that we now have three 
boundary conditions on the function Fo(q), wherelo = fo + Fo satisfies (2.3); these 

{l f z  

are EO(O) = &(O) = P&o) = 0. 

Thus Eo(q) will be identically zero unless fo(q) is not the unique solution of the 
Falkner-Skan problem. The large amount of analytical and numerical work which 
has been done on this problem indicates thatfo(q) is the unique solution, so that 
no eigenfunction exists. The analysis in the appendix proves that there can be 
no eigensolution for small al, i.e. Fo < fo, for in that case (2.3) could be linedzed 
to give Ft + (n + l)foFS - 4nfh.F; + (n+ l)f:Fo = 0,  (3.20) 

which is of the form (A l), with h = - 4n. We may therefore setf,(q) -= fo(q). 
Subsequent terms in the inner expansion, and boundary conditions on the 

unknown terms of the outer expansion, are obtained similarly, but with in- 
creasingly lengthy algebra. We require the expansion 

(1-3n) 
fo(q) = +azr2--n 3 7 - 7  3 a y +  ..., 

where az = f:(O) is given €or n = 0, Q and 1 in tabIe 1. The results for the next 
three terms of the inner expansion are given below. 

y,= !laze2, (3.21) 

requiring Pi(0) = FZ(O) = T2(7) = 0. (3.22) 

Yz = .$+m: - pnaf 5 + +Fi( 0 )  6 2  - in53 - Qnaf e-25 - inaf e-c 

x (3 cos [+ (c+ 2) sin 5) + I m  (ei7 [ - 2ncc1i[+ nalk( 1 - e-kc)] 

+ e2iT [+naf 6 e-kc - ( naf g/442) (1 - e-dzkc)]}, (3.23) 

where k = 1 + i, = 1 - i, and we require 

F3(0) = yna;, Fi(0) = -&a2 
(3.24) 

T3(7) = Im {.a& eiT + (na:/842) k eZiT}. 1 
Finally, 

YP, = ~F~(0)~2+Im{ala2eiT[&(13-75n)+~nk~-;P.(l-3n)i~2 
-e-kc(&(13-75n)+&13-59n)k[+&(5- 19n)ic2-&(l -3n)zc3)]}, 

(3.25) 

(3.26) 
T4(7) = - &a1a2(7 - 3%) COST. 

Note that all the boundary conditions for the functions Fl, F2 and F3 have now 
been obtained. Unless there is an eigensolution, Fl will be identically zero, but 
this is true for F2 and F3 only in the case n = 0. In  the appendix, the eigenvalue 

1 where we require &(O) = F4(0) = 0,  
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problems for these functions are examined in detail. It is proved there that no 
eigensolutions to the problems determining the functions F ! ( y ) ,  for any ma 2 0, 
exist in the case n = 1 and that no eigensolutions exist if m < 4 in the case 
n = +. In  the case = 0, however, the first eigenvalue is m = 2, and in that case 
the function F!(q) is an arbitrary multiple offo - 7th. 

On physical grounds, the appearance of eigenvalues for n < 1 is to be expected 
in order to take account of different upstream conditions in the boundary layer. 
If there were no eigenvalues, the large-e, expansion, in inverse powers of xi(l--fi), 
would be completely determined, and the flow at large x would be independent 
of that at small x (except for n = 1, where the expansion is independent of x), 
although the boundary-layer equations are parabolic in x. In  general, all eigen- 
solutions, corresponding to both integer and non-integer eigenvalues m, will be 
required to take account of upstream conditions, although only the former will 
affect the above expansion. In this paper, the expansion is terminated at  the 
yT(x-Q(l-n)) term, so the only eigensolution to influence the numerical results 
will be the function F!(q), corresponding to m = 2 in the case n = 0. The next 
eigensolution to appear would also be in the case n = 0, corresponding tom = 3.77 
(Libby & Fox 1963). 

The eigensolutions considered in the above discussion are steady and influence 
the unsteady expansion only through the eigenfunctions corresponding to 
integer eigenvalues (e.g. m = 2 for n = 0). Unsteady eigensolutions have been 
considered by Lam & Rott (1960), and more recently by Ackerberg & Phillips 
(1972), in the small amplitude (first order in al), flat-plate (n = 0) case. They have 
demonstrated the existence of unsteady eigensolutions which decay exponentially 
with x and would not appear in an algebraic expansion in inverse powers of x.  
The effect of these eigensolutions on the skin friction is small for undisturbed 
upstream conditions, but can become large if a perturbation is introduced into 
the boundary layer (in Ackerberg & Phillips’s numerical experiment, the per- 
turbation was introduced at el = 1.0 and its effect was still discernible at el = 6.0). 
Similar unsteady eigensolutions are to be expected in the present problem, but 
their form will not be the same as those of Ackerberg & Phillips, because we 
here take the limit el -+ co without first having taken the limit a, --f 0. This 
problem is examined briefly in the appendix, and the probable form of the 
eigenfunctions, if they exist, is given; existence has not yet been proved. We 
may note the contrast between this problem and that of the companion paper, 
where an infinite set of eigenfunctions does appear in the algebraic expansion, 
and there are no unsteady eigensolutions, exponentially decaying in x. 

Ifwe ignore the exponentially decaying eigensolutions, we may now write down 
the large-e, expansion for the skin friction S (from equation l . l O ) ,  which is given 
in dimensionless form by 

= yT1{al(cos 7 + sin 7) + yla,  
+ 7; [ins? + 2na,(sin 7 - cos 7 )  - na?( I - 1/42) (sin 27 + cos 2711 
+y2[P~(0)-&a1a,(5 - 19n)cos7]+O(y~)}. (3.27) 
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12 c2 = cc;2P;(o) 0- G;,(O) 0) 
0 ? 0.72 0 0 

7.1 0 0 
1 0.15536 0.72 - 0*0001086 0,49721 

7.1 - 0.0006378 11.4715 
1 0.8605lt 0.72 0.21636 - 1.24370 

7.1 1.20715 - 10.4457 

t This agrees with the result of Ishigaki (1970) to 3 significant figures. 

TABLE 3 

The values of &’(O) for n = + and 1 were obtained by numerical integration of 
(3.12) with boundary conditions given by (3.22), (3.24) and E;, + 0 as 7 -+ co, and 
are given by P’L(0) = a2,C2, where C, is tabulated in table 3. In  all future computa- 
tions, the indeterminate Pg(0) for n = 0 will be taken to be zero. 

3.3. Solution of the heat equation 

The large-e, expansion for the temperature 8 can now be developed in a similar 
way. Let the outer and inner representations of 8 be 8 and 0 respectively. In 
terms of outer variables the heat equation (1.8) is 

2& = Y W  {(I/.) &+ (1 + n) goq + 2x($zgq - $7&Jl. (3.28) 

We seek a solution for 0 in the form of an expansion in powers of y1 like (3.7) 
for $, which must reduce to the steady solution gol(q) (see equation (2.8)) in 
the limit a, -+ 0 for all y,, and all of whose terms must tend to zero exponentially 
at infinity. Solutions for the first few terms of the outer expansion are 

(3.29) 

where the functions G,(q) are functions of integration, which must satisfy 
certain second-order ordinary differential equations in order that no secular 
terms should appear. Go satisfies (2.8) with m = 0 and G, (m = 1,2 ,3)  satisfies 
the equation 

(I/u)G~+(l+n)fhG:,+rn(l-n)fhG, = Xm(q), (3.30) 

where Sl = 0 and Sm,l is known. It is shown in the appendix that the homo- 
geneous parts of these equations do not have eigensolutions satisfying both the 
condition at infinity and the condition G,(O) = 0, for the values of n, m and r 

24 F L M  5 5  
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in which we are interested. If unsteady eigensolutions, exponentially decaying 
in x, exist for the stream function, then they presumably also exist for the 
temperature. 

In  terms of inner variables, the heat equation is 

20,- (i/a)0c5 = 2y2,{nY05-x(0,Y5-05Y2)}. (3.31) 

Again, we seek a solution in powers of yl; the boundary condition at the wall 
requires that 0,(0, 7) = 1, 0,,,(0, 7) = 0. The boundary condition as 6 tends to 
infinity is obtained, as usual, by replacing 7 by ylc in the outer solution (3.30), 
and once more expanding in powers of yl. The condition that the equations for 
the 0, should have non-diffusing solutions leads to definite values for the 
constants G,(O), so that the functions G,(7) are fully determined in the absence 
of eigensolutions. The results of this procedure are as follows, where p1 = g&(O) 
(given in table 2):  0, = 1, G,(O) = 0, so that G,(y) = 0 and g0(7) = gol(q); 
O1 = p16, G,(O) = 0,  so that G,(7) = 0;  0, = 0, G,(O) = 0,  but G,(T,J) 9 0 because 
equation (3.30) with m = 2 is inhomogeneous (ZZZ(q) is in fact zero for n = 0 and 

0, = Gj(0) 6- (n + 1) azP1 z, G4(0) = 0. 

The values of GL(0) and GA(O), required in the above equations, have been com- 
puted where necessary from the numerical integration of equations (3.30), and 
are given in table 3 for n = 0, 4 and 1. For the calculation of G,(v) in the case 
n = 0,  the function F2(7) was taken to be identically zero. 

The heat transfer per unit area, see (1.11), is given in dimensionless form as 

from the above equations for the Om, with a corresponding expression for a = 1. 

4. Numerical results and discussion 
In this section we present the results of calculations of the skin friction and 

heat transfer, obtained from both the small-el and the large-el expansions. The 
primary purpose is to determine over what range of values of el the two expan- 
sions overlap, if any, especially for values of the amplitude parameter a, larger 
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bhan those considered by other authors. Lighthill (1954), for instance, shows that 
the phase of the skin friction (calculated from two terms of the small- and large-s, 
expansions, for small al, using the Karman-Pohlhausen method) coincides in 
the two expansions for values of s1 of 0.6 in the case of the flat-plate boundary 
layer (n = 0 )  and 5-6 in the case of the stagnation-point boundary layer (n = 1). 
The amplitudes of the skin-friction variations also approximately coincide at  
these values of 6,. The corresponding amplitudes and phases of the heat transfer 
(for a Prandtl number a = 0.7) do not agree so well, but smooth curves can be 
drawn, linking the two expansions, in the case of the stagnation-point boundary 
layer. Other authors appear to find somewhat different overlap values of el. 
For example, Ghosh (1961) postulates a value of 1-0 in the case n = 0,  and in 
the same case, the results of Lam & Rott (1960) and Ackerberg & Phillips (1972), 
using 15 terms of the small-s, expansion, show a value of about 1.6. In the case 
n = 1, Ishigaki (1970) agrees with Lighthill’s value of about 5-6, but Gersten 
(1965) shows a value of about 3-0. Gersten’s results show that the expansions for 
heat transfer (r = 0.7) do not even approximately overlap for either n = 0 or 
n = 1. We, too, consider the two extreme cases n = 0 and n = 1, together with 
the intermediate case n = 4. 

In  the small amplitude, two-term expansions of Lighthill, consisting of the 
mean and one oscillatory term, agreement of the amplitude and phase of the 
skin friction (or heat transfer) variations is the obvious criterion for deciding 
the point of overlap of the two expansions. Here, with more terms, involving 
second harmonics, the criterion is less clearcut. We consider four quantities as 
possible candidates for the overlap criterion: the magnitude of the maximum 
skin friction, the phase of this maximum, the overall amplitude of the skin- 
friction variation, and the mean skin friction. These four quantities are plotted 
against el in figure 1 for the case n = 0 and a, = 0.5 (not small); the two solid 
curves in each case represent the small- and large-a, expansions, as given by the 
quantities Xl(x, 7) (equation (2.6)) and S,(x, T )  (equation (3.27)) respectively. 
We see that the values of the amplitude and the maximum from the two ex- 
pansions never coincide; they approach most closely at  values of E, in the ranges 
0.5-0.6 and 0-6-0.7, respectively. The means agree a t  E, M 0.47, and the phase 
of the maximum at s1 = 0.6. These values are close together, suggesting that 
there is a region where the two expansions approximately overlap even at this 
value of a,. We choose to d e h e  the overlap value of E, as that value at which 
there is closest agreement for the maximum skin friction. The corresponding 
values of s, in the cases a, = 0.2 and a, = 0.8 are given in table 4. To see how 
good the overlap is, we examine in detail the complete cycle, rather than single 
representative quantities. In  figure 2 the quantities S,(x, T )  (calculated from the 
three terms of (2.6)) and X , ( X , T )  (from equation (3.27)) are plotted against T 

in the case n = 0,  s1 = 0.6, a1 = 0.5. Agreement is fairly good everywhere except 
near the minimum skin friction, where the small-s, expansion gives values con- 
siderably lower than does the large-s, expansion. This is typical of all our calcula- 
tions, and reflects the fact that, near T = $71, the free-stream velocity is smallest, 
so that the instantaneous value of w x / U ( ~ )  is greatest and the small-a, expansion 
is most likely to break down there. The discrepancy becomes even more marked 

24-2 



372 T. J .  Pedley 

0.45 - 

0.40 - 
1 

0.1 0.2 0.3 0.5 1 2 3  

€1 

FIGURE 1. Comparison of the values of the maximum, the amplitude, the mean and the 
phase of the maximum of the skin-friction variation, calculated as functions of 6 ,  from 
the small- and the large-a, expansions (2.6) and (3.28) respectively. Broken line represents 
only two terms of (2.6). The case shown has n = 0, a, = 0.5. 

n O  0 0 P + f 1 1 1 
a, 0.2 0-5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

0.651 0-65t 0.70t 2.4 2.1 2.2 6.2 6.6 6.0 

t Coincidence does not occur in these cases and the value given is that of closest 
approach. 

TABLE 4. Values of a, a t  which the values of the maximum of the skin-friction variations, 
as calculated from the two expansions (2.6) and (3.27), coincide 
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FIGURE 2. Graphs of S,(z, 7) and S,(x, 7) against 7 as calculated from (2.6) and (3.27). 
8, represents the q-term expansion of S,. - S 17 * ---, S,. n = 0, U, = 0.5, = 0.6. 

for larger values of a,, and it is for this reason tha t  we choose the point of maximum 
skin friction as the point at which to determine overlap. Also shown in figure 2 
are the curves of 8, against T as calculated from one and two terms of (2.6). 
These confirm that, except near the minimum, the difference between the three- 
and the two-term expansions is considerably smaller than that between the two- 
and the one-term expansions, so that the small-s, expansion is a useful asymptotic 
expansion of the real solution for el < 0.6. Because of the error near the minimum, 
however, overall agreement between the small- and large-el expansions is better 
when only two terms, not three, of the former are used. This is again more marked 
for larger values of and indicates that the asymptotic expansion for small-el 
should be curtailed after two terms for greatest accuracy at  values of el near 
overlap. This assumes that the four-term large-el expansion is itself close to the 
true solution; since the third term of (3.27) is zero for n = 0, a comparison of the 
two-, three- and four-term large-el expansions is not very informative, but 
a similar comparison for n = 4 (figure 3) does indicate that the large-s, expansion 
is a useful approximation near overlap. The broken lines in figure 1 show the 
maximum, the amplitude and the mean of the skin friction as calculated from 
only two terms of (2.6). Although the mean never coincides with the large-s, 
mean, the curves of the maximum and the amplitude are brought much closer 
to their large-s, counterparts, with closest approach at a somewhat larger value 
of el than before. 

The other values of n ( = 3, I) have been considered in a similar way. In  these 
cases, overlap does occur for both the maximum and the amplitude of the skin 
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FIGURE 3. Graphs of X,(x, 7 )  against 7 as calculated from 2, 3 and 4 terms of (3.27) 
respectively. n = +, a, = 0.8, el = 2.0. 

friction, but a t  different value of a, (2.2 and 0.58 respectively, for example, in 
the case n = 4, a, = 0.8). In  graphs corresponding to those of figure 1, the curves 
of mean skin friction never cross, and those of the phase of the maximum are 
very close together for a range of values of a,. The overlap values for the maximum 
in these cases are all given in table 4; because this is likely to be the point of 
greatest accuracy of the small-a, expansion, we choose s1 = 2-0 as the overlap 
value for the case n = 3, and a, = 6.0 in the case n = 1. Figure 3 shows that the 
difference between the four- and the three-term large++ expansion (for n = 9, 
a, = 0.8) is both very small and small compared with that between the three- 
and the two-term large-s, expansions; that is, this expansion is likely to be an 
accurate approximation to the true solution at this value of a,. The corresponding 
small-a, expansions are given in figure 4, and again the three-term expansion 
breaks down near the point of minimum velocity. Also plotted is the curve of 
the four-term large-a, expansion, and it can be seen to agree more closely with 
the two-term than with the three-term small-s, expansion, at least over half 
the cycle. Agreement between the amplitude and the mean of the two expansions 
is also better with only two terms of the small-s, expansion. At some lower value 
of a,, of course, the three-term small-a, expansion must become more accurate 
than the two-term expansion, but then they are so close to each other that the 
latter can be used with confidence. 

The n = 1 case yields similar results. At a1 = 6.0 the high-s, expansion is 
seen to be useful for values of a, up to 0.8 (from graphs similar to those of figure 3), 
while the three-term low-a, expansion breaks down near the point of minimum 
velocity, although in this case it agrees quite well with the large-el expansion for 
more than half the cycle. Over the rest of the cycle the two-term expansion agrees 
more closely, and is again to be preferred overall. 
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FIGURE 4. Graphs of S,(z, 7) and X,(z, 7)  against 7 as calculated from (2.6) and (3.27). 
n = +, a, = 0.8, el = 2.0. Other notation as in figure 2. 

When we turn to the heat transfer, we fhd that overlap between the two 
expansions is far less satisfactory. We discuss the results for only one value of 
a, ( =  0*5 ) ,  since the above results for skin friction (table 4) show that the value 
of a, has little effect on the overlap value of el. The maximum, amplitude, mean 
and phase of the maximum of heat transfer have been calculated from the small- 
and large-e, expansions from (2.9) and (3.32) respectively, for the same three 
values of n and for two values of the Prandtl number CT (0.72 and 7.1). Once 
more, the two-term small-s, expansion is most appropriate for comparison with 
the large-s, expansion, because of the large magnitude of the third term over 
part of the cycle. In  this case, the two-term large-s, expansion is also the most 
appropriate because, for n = 0, the third term is zero, and, for the other values 
of n, the quantity Gi(0) has a relatively large absolute value (table 3). The values 
of el at which overlap is closest, by the various criteria, are given in table 5; 
we see that they depend strongly on v. At these ‘overlap’ values of€,, agreement 
between the two expansions is not as close as for skin friction. Figure 5 ( a )  shows 
the comparison over the whole cycle in the case n = 0, a, = 0.5, el = 0.4, CT = 7.1 
(the value of E, was chosen as being close to the value given in table 5 for the 
maximum). The most marked difference between the two curves is in the phase. 
In  only one case, n = 4, CT = 0.72, do the amplitude, the maximum and the phase 
all approximately coincide at el = 2-0, and figure 5 ( b )  confirms that overlap is 
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n 0- Maximum Amplitude Mean Phase 

0 0.72 6.0 5.0 None 7.0-8.0 
7- 1 0.44 0.36 None > 3-0 
0.72 2.5 2.1 None 2.1 
7.1 0.36 0.35 0.54 None 

1 0.72 < 0.5 0.92 None None 
7- 1 3.2 0.5 None None 

- 
3 

TABLE 5. Values of el a t  which apparent overlap occurs between the two heat-transfer 
expansions, as calculated from two terms of the expansions (2.9) and (3.32). 'None' means 
that the two expansions give exactly parallel results. a1 = 0-5. 

0 +ll 71 2n 2n 

(a) 7 7 (b)  

FIGURE 5. Graphs of Q1(z, 7 )  and QZ(z, 7) against 7 as calculated from (2.9) and (3.32). 
QDg represents the p-term expansion of QD. -, Q1; - - -, Q2. (a)  n = 0, a, = 0.5, 
el = 0.4, 0- = 7.1. (6 )  n = Q, a, = 0.5, el= 2.0, 0- = 0.72. 

better throughout the cycle. In all other cases, the overlap is as poor as for n = 0, 
and when n = 1, (r = 7.1 overlap can in no sense be said to occur. 

Part of the reason for the poor agreement in general between the two heat- 
transfer expansions may be that the large-€, expansion (3.32) has not been 
extended to include second harmonic terms, which would appear at O(y!), so 
that there is little flexibility in adjusting the phase of this expansion. However, 
since even the O(y:) terms appear to decrease the accuracy at overlap values of 
el, this cannot be the complete explanation. The principal reason for poor overlap 
is probably associated with the dependence on (r. For instance, consider the case 
n == 0, (r = 0.72, where overlap appears to occur for el = 5-0. The heat-transfer 
expansion cannot in fact be accurate for el > 0.6, because the velocity field used 
in the heat equation was calculated from the small-e, stream-function expansion 
of $2, shown above to be inaccurate for el > 0.6. Similarly, in the case n = 0, 
(r == 7.1 (apparent overlap at el = 0.4: see figure 5(a ) )  the large-el heat-transfer 
expansion will be inaccurate for el < 0.6. In  the one case where heat-transfer 
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and skin-friction overlap occurs at  the same value of s1 (n = 3, g = 0.72, s, = 2.0), 
agreement of phase as well as maximum and amplitude is achieved (see above and 
figure 5 ( 6 ) ) .  

A further possible reason for poor overlap is the presence of unknown multiples 
of the unsteady eigenfunctions discussed in 93 and the appendix. It is not possible 
to assess their importance in any given case without numerical solution of the 
boundary-layer equations. Such a solution was performed for the small amplitude 
flat-plate viscous boundary layer by Ackerberg & Phillips (1972). They confirmed 
the good overlap between the small- and large-s, expansions for the amplitude 
and phase of the skin-friction variations, but noticed some discrepancy, in the 
overlap region, between the exact solution and the composite expansion for the 
phase. They then derived both the expansions and the exact numerical solution 
for the reduced volumetric flux, which is proportional to the unsteady part of 

and is a quantity which depends on the complete velocity profile, not merely 
its slope at  the wall. Their results show that the exact solution for the amplitude 
and phase of this quantity, as functions of el, oscillate vigorously about the large- 
el expansion for values of el up to a t  least I 0  (whereas their skin-friction overlap 
value was 1.6). Thus for this quantity the asymptotic expansion is inaccurate. 
They attribute the oscillatory behaviour of the exact solution to the appearance 
of large multiples of the unsteady eigenfunctions already referred to. The above 
is a salutory reminder that good overlap between two asymptotic solutions for 
one part of the solution to a problem (here the skin friction) neither implies 
good overlap for the rest of the problem (e.g heat transfer) nor guarantees that 
either of them is close to the exact solution in the region of overlap. 

The above results can be summarized as follows. For values of s, above the 
chosen overlap value, say, ss(n) ( M 0.6 for n = 0, 2.0 for n = +, 6.0 for n = 1), 
the four-term expansion (3.27) is an accurate representation of the skin friction 
throughout the cycle. For s1 < ss(n) the first two terms of the expansion (2.6) 
yield the most uniformly accurate expansion available for the skin friction, and 
it agrees well with the large-s, expansion at s1 = ss(n). Overlap between the 
small- and large-s, expansions for heat transfer is not good. The values at which 
the two-term expansions (in each case the most uniformly accurate) agree most 
closely, i.e. the values of sH(n, 8) from table 5, depend markedly on the Prandtl 
number g as well as on n. In  any given case we should not use the small-s, 
expansion for s1 > min (e8, eH) ,  nor the large-s, expansion for s1 < max (ss, sH).  

For some values of el and ccl covered by this theory, the skin friction is negative 
over part of the cycle (see, e.g. figure 2 ( b ) ) .  For a given ax, there is a value of el, 
say slR (corresponding to a given value of x), for which the minimum skin friction 
is zero; as s1 (and hence x, for 0 < n < 1 )  increases above sIR, so the skin friction 
is negative over an increasing proportion of the cycle. During those parts of 
the cycle, the velocity profiles will resemble ‘separated’ velocity profiles, with 
a region of reversed flow near the wall. There has in the past (see e.g. Moore 1957) 
been considerable discussion on whether this phenomenon is the same as steady 
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FIGURE 6 .  Graphs of the value of the amplitude parameter aIR(e1) at which skin friction 
a t  the wall reverses for a given value of sl, plotted in the three cases m = 0, +, 1. The broken 
lines have been inserted to provide a smooth join between the small- and the large-s, 
expansions. 

separation, when the boundary-layer approximation breaks down, but it seems 
clear that, if the separation streamline makes a sufficiently acute angle with the 
wall, there is no inconsistency in the use of boundary-layer theory. In  our case, 
with 0 < n < 1, it  can be verified that lzll < Iu] a,t all points near the point of 
zero shear, and the boundary-layer approximation is quite consistent. During 
each cycle, the point of zero shear moves up the wall from x = co (with a velocity 
which is initially infinite) to a point given by el(%) = elR, and then moves off 
to infinity again. If we were considering the case n < 0,  where steady separation 
occurs, the unsteadiness would have a profound effect. 

The question of whether a given point on the wall suffers a reversal of shear, 
for an outer flow of a certain amplitude, can be answered for each value of el 
(i.e. x) by calculating that value of al, say alR(e1), for which the minimum skin 
friction is zero. These calculations have been made for the cases n = 0, Q and 1, 
and the results are shown in figure 6 (the small- and large-el expansions are 
joined near overlap by a broken line).? As n increases, so does the value of 
alR for a given el: e.g. for el = 1, alR = 0-36 for n = 0,  0.65 for n = 9, a.nd 0.80 
for n = 1. This is of course expected, since an increase in n is equivalent to an 
increasingly favourable pressure gradient, which can be countered near the 
wall only by an increase in the maximum adverse pressure gradient available 
during the oscillation, i.e. by an increase in ml. Note that the case n = 1 is 
different from the others in that el is independent of x. Thus if there is skin- 
friction reversal at  one point of the wall y = 0, there is simultaneous reversal 
at every point of the wall. 

Finally, it is pertinent to ask whether this theory can ever be valid for flows 
in which the free stream reverses, i.e. a, > 1. We cannot have outer flow reversal 
near the leading edge (small x, or small el) when n < 1, because the initial condition 

a l R ( s 1 )  = “ZY1(1+ (1 -*;.,ry-*7 (4.1) 

t For n = 0, alR can be readily calculated from the large-el expansion to  be 

but no such simple analytic expression is available from the small-s, expansion or for 
other values of m. 
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that u(0, y, t )  be prescribed could no longer be applied. Mathematically, this 
follows from the breakdown both of the transformation (2.1) if U ( X , T )  < 0 and 
of the small-s, expansion when V ( T )  is zero (see equations (2.4)). This breakdown 
also occurs for n = 1, when there is no leading edge as such, and follows from the 
non-existence of steady stagnation-point flow away from zt wall, so that no 
quasi-steady solution can be found. For large values of s, (i.e. large x, for n < l), 
however, the expansion of 5 3 is formally valid for all values of a,.? This has been 
noticed before (Lin 1956; Gersten 1965) and follows from the complete un- 
coupling of the mean and oscillatory parts of the flow. In  the stagnation-point 
case (n = 1) this means that a solution can be found with a, > 1 for all x, but in 
all other cases the need to find a solution at small x enforces the restriction 01, < I .  

I acknowledge with gratitude my indebtedness to Professor Sir James Light- 
hill, a t  whose instigation I first became interested in unsteady boundary layers. 
I am grateful for financial support to the Royal Society, the Merchant Taylors’ 
Company, the Nuffield Foundation and the Medical Research Council. 

Appendix. On the existence of eigensolutions 
steady eigenfunctions 

We wish to discuss the existence of eigensolutions to the problem posed by 
equations of the form 

P”’+(n+ l) f0P”+hf~F‘+(1-3n-h)f ,”F = 0, (A 1) 
where f o ( T )  is given by (2.3) and its associated boundary conditions, subject to 
the boundary conditions 

F ( O )  = ~ ’ ( 0 )  = 0, ~ ’ ( 7 )  -2 o as 7 -+ 03. (A 2) 

The form (A 1)  includes all equations (2.5) for the functions fmk(7)  occurring 
in the small-6, expansion, in which case 

h = -2[m+n(2-m)]; (A 3) 

it also includes the equations (3.12), (3.20), etc., for the functions of integration 
&(v) in the large-s, expansion, in which case 

h = m-n(m+4) .  (A 4) 

We are principally concerned with the range 0 < n < 1, and m is always a non- 
negative integer. Initially the analysis closely follows that of Libby & Fox (1963), 
who examined the case n = 0 in detail. 

We first notice that F = f; is one solution of (A l),  and therefore make the 
transformation P = fhG, H = G‘ to obtain a second-order equation for H :  

(A 5) 
We shall need to know the asymptotic form as 7 -+ 00 of the three independent 
solutions of (A 1 ) .  The asymptotic form for fh is 

f ;  H” + [3f: + (n + I )  f o  f ;] H’ + [ ( A  + 6n)fh2 - 6n - (n + 1) fof:] H = 0. 

f ;  1 + &,q-(l+f~n)i(l+n) exp [ - $(n + 1) qz], 
Although it will be useful only if successive terms of equation (3.27) decrease. 
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where 9 = 7 - p  and /3 = lim (7 - f,) and is given in table 1. The general solution 

of (A 5) can then be shown to have asymptotic form 

311 2 

rl+m 

(A 6 )  H - &,?-h/(n+l) + & “~/b+1)-1 exp [ - L(n + 1) 71h2] 

from which the senera1 asyinptotic form for F’ can readily be derived. Expo- 
nential decay is assured if &, is zero, and since the problem for H is a Sturm- 
Liouville problem, we anticipate an infinite number of real discrete values of h 
for a given n (or of n for a given A) for which exponentially decaying eigenfunc- 
tions exist. The reality of the eigenvalues is proved in the usual way. 

The first general result about the eigenvalues is obtained if we multiply (A 5 )  

fo(t) dt and integrate from 0 to co. After one integration by Hf h3 exp (n + I )  

by parts, we have 
{ 1: 1 

- [fh3 exp { } HH’],“ +Sm {f;H’, + [6n( 1 -fh2) + (n + l)fOfO”] H2} 
0 

xfh2exp( )dq = h f&*H2exp{ )d7, 
/Om 

where { ) = (n + 1 )  fo(t) dt . The asymptotic forms with &, = 0 show that if 

H i s  an eigenfunction then the first term of the above equation is zero. The in- 
tegrands of both the other terms are greater than or equal to zero for all 11, so 
no non-trivial eigensolution can exist if h < 0. Thus no eigensolutions occur in 
the small-s, expansion, where h is given by (A 3); this is of course expected on 
physical grounds. In  the large-s, expansion, where h is given by (A 4 ) ,  we see 
that eigensolutions cannot exist if 

{ !: 1 

m < 4n/(l +n). (A 7) 

The second general result comes from considering the first positive eigenvalue 
A,. The corresponding eigensolution F, will be such that Fh has no zero between 
7 = 0 and 7 -+ co; without loss of generality F:(O) may be taken to be strictly 
positive, so that FA and F, are greater than or equal to zero for all 7 (recall that 
fo,f; and f: are greater than or equal to zero for all 7). We integrate (A I )  directly 
from 0 to co, applying the given boundary conditions, and obtain the following 
pair of equations : 

Z(h0 + n - 1) /: Fh d7 = Pg( 0) + (A, + 3% - I )  ~ ( c o ) ,  (A 8a)  

I n  each case, the integrand on the left-hand side is strictly positive, and, if 
(a)  A, > 1 - 3n or (b)  A, < 1 + n, the right-hand side is also strictly positive. 
Hence no solution can exist if, in addition, (a )  A, < 1 - n or (b )  A, 2 1 - n. 
Therefore the first eigenvalue cannot lie in the range 

1-3n < A ,  < l+n. (A 9) 
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Now, if n 2 4, the left-hand end of this range is less than or equal to zero, 
and no eigenvalues less than or equal to zero are possible, so in that case 
no eigensolutions exist if h < 1 +n. From (A 4)  this means that, with n 2 Q, no 
eigensolutions are possible with m 6 (1 + 5n)/( 1 - n). In  the case n = 1, this means 
that no eigensolutions exist for any m; the large-el expansion is fully determined. 
I n  the case n = Q, we can rule out eigensolutions only for m < 4. In  the last case 
of interest to us, n = 0, equation (A 7 )  shows that no eigensolutions exist for 
m 6 0 and (A 9)  shows that the first eigensolution is not m = 1, but this type of 
analysis takes us no further. However, Stewartson (1957) has shown that m = 2 
is an eigenvalue and that, probably, no other eigenvalue is an integer. Libby & 
Fox (1963) verified numerically that m = 2 is the first eigenvalue, and that the 
next nine are not integers. Thus of all the equations of the form (A 1) occurring 
in the main body of this paper, the only one possessing an eigensolution is (3.12) 
for P2(r]), in the case n = 0; the eigenfunction is (Stewartson 1957) 

Y2(r]) = f o  - rfh. (A 10) 

Next we turn to those ordinary differential equations occurring in the analysis 
of the heat equation. They are of the form 

(Ija) G + (n + l)foG'+pfkG = 0, (A 11) 

subject to boundary conditions G ( 0 )  = G(o0) = 0 (cf. Fox & Libby 1964). In 
the small-6, expansion, 

and in the large-el expansion, 

where, as before, 0 6 n < 1 and m is a non-negative integer. The asymptotic 
form for G is 

p = - 2 m ( l - n )  (A 12) 

,u = m(1-n), (A 13) 

G &,$-p/(n+U + & zr]p/(n+l)--l exp [ - &(n + 1) ?j2]. 

In a manner similar to that used above with (A 5 ) ,  we can show that the eigen- 
values are real and positive. Thus, when ,u is given by (A 12) there are no eigen- 
solutions, and when p is given by (A 13) there are none if n 2 1. When p > 0, 
the first eigenfunction C, can without loss of generality be taken to be every- 
where greater than or equal to zero, with Gh(0) > 0. An integration of (A 1 I )  gives 

so the first eigenvalue cannot be less than or equal to 1 + n, and hence no eigen- 
value can be less than or equal to 1 f n .  Thus when ,u is given by (A 13), we see 
that there are no eigenvalues if 

m < ( l+n) / ( l -n ) .  (A 14) 

When n = 3, this rules out eigensolutions for m < 2, and when n = 0 they are 
ruled out only for m < 1. The eigenvalues of (A 11) will depend on a, and will 
not in general be integers [Fox & Libby (1964) showed that none of the first 10 
are integers when u = I]. In  the cases m = 2, 3 (n = 0) and m = 3 (n = i), for 
the two values of u used in this paper, the numerical solution of (3.30) was 
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examined to see if all values of GL(0) led to a solution satisfying the boundary 
condition at infinity, which would indicate the presence of an eigenfunction. 
In  no case did such behaviour occur, although in the case n = 0 the solution for 
G, is indeterminate, because F2 contains an eigenfunction. 

Unsteady eigenfunctions 

Consider first the form of sucha solution in outer variables. We seekan asymptotic 
solution of (3.4), as x -+ co, of the form 

It: = $ + A  
where $ is the algebraic asymptotic expansion (3.7), analysed in detail in $3, 
and q5 is expected to be exponentially small as x -+ 00. If we therefore neglect 
nonlinear terms in q5, and retain only the largest terms in the coefficients as 
x -+ co, we obtain the following partial differential equation for 4: 

$77 = Kxn{f:#Z- (alsinT+fh) $ST}) 

where K = y?x-(l-n) = U,(x) x-~/oJ.  The solution must satisfy the usual (outer) 
boundary conditions in 7, be periodic in T and decay exponentially as x + co. 
Possible solutions in which the x dependence is separable, and exponential, can 
be found, and the substitution 

(n < 1) leads to the following equation for P: 

<7 = h2(f;P,-f;P). 

The general solution of this is not available, but the only acceptable separable 
solution which leads to a sensible matching condition for the inner expansion is 

p =f87). (A 15) 

Thê  correspondiEg function in inner variables is obtained by substituting 
Y = 'I"+ CD, where Y was obtained in $3) into (3.15) and linearizing in the same 
wav. The substitution 

leads to a partial differential equation for Q which, after one integration, 
becomes 

where A(T) is the function of integration. The boundary conditions on Q are 

Q~c-2Q, -2A2a ,e -~s in (~ -~)Q = A(T) ,  (A 16) 

&(O,  7) = &&o, 7) = 0 [&cg(O, 7 )  = A(T)],  &(C,T)  N a26- +A(T) as 5 + 

(matching with (A 15)), and Q must be periodic in T .  Together with (A 16) these 
conditions constitute an eigenvalue problem for h2, for which I have been unable 
to prove that solutions do (or do not) exist. Note that the above form of solution 
is different from that found by Ackerberg & Phillips (1972) for the small-a, 
equations. 
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